Title:Estimating the spatial variation of electricity consumpution

image.png

Abstract

Effective detection of abnormal electricity users and analysis of the spatial distribution and influencing factors of abnormal electricity consumption in urban areas have positive effects on the quality of electricity consumption by customers,safe operation of power grids,and sustainable development of cities. However,current abnormal electricity consumption detection models do not consider the time dependence of time-series data and rely on a large number of training samples,and no study has analyzed the spatial distribution and influencing factors of abnormal electricity consumption in urban areas. In this study,we use the Seasonal-Trend decomposition procedure based on Loess ( STL) based time series decomposition and outlier detection to detect abnormal electricity consumption in the central city of Pingxiang,and analyze the relationship between spatial variation and urban functions through Geodetector. The results show that the degree of abnormal electricity consumption in urban areas is related to geographic location and has spatial heterogeneity,and the abnormal electricity users are mainly located in areas with highly mixed residential,commercial and entertainment functions in the city. The results obtained from this study can provide a reference basis and a theoretical foundation for the detection of abnormal electricity consumption by users and the arming of electricity theft devices in the power grid.

Keywords

Abnormal electricity user detection; Spatial autocorrelation; Abnormal electricity usage in urban areas; Points of interest enrichment factor; Geodetector

Full Text Download

Q.E.D.